

NAMIBIA UNIVERSITYOF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH, NATURAL RESOURCES AND APPLIED SCIENCES DEPARTMENT OF MATHEMATICS AND STATISTICS

QUALIFICATION: Bachelor of Science; Bachelor of Science in Applied Mathematics and Statistics			
QUALIFICATION CODE:	07BOSC; 07BSAM	LEVEL:	6
COURSE CODE:	CLS601S	COURSE CODE:	CALCULUS 2
SESSION:	JANUARY 2023	PAPER:	THEORY
DURATION:	3 HOURS	MARKS:	100

SUPPLEMENTARY / SECOND OPPORTUNITY EXAMINATION QUESTION PAPER		
EXAMINER:	DR. DSI IIYAMBO	
MODERATOR:	DR. N CHERE	

INSTRUCTIONS

- 1. Attempt all the questions in the booklet provided.
- 2. Show clearly all the steps used in the calculations.
- 3. All written work must be done in black or blue inked, and sketches must be done in pencil.

PERMISSIBLE MATERIALS

1. Non-programmable calculator without a cover.

THIS QUESTION PAPER CONSISTS OF 3 PAGES (Including this front page)

Question 1.

Consider the function $f(x) = 3^x$, on the interval [0, 10]. Using the left-hand end point of each subinterval and n = 10, calculate the Riemann sum of f

Question 2.

Evaluate each of the following integrals

a)
$$\int \left(1 - \frac{1}{x}\right) \cos(x - \ln x) \, dx$$
 [7]

b)
$$\int_0^3 \frac{1}{\sqrt{3-x}} \, dx$$
 [9]

c)
$$\int \sqrt{4-x^2} \, dx$$
 [12]

d)
$$\int_0^{\frac{\pi}{2}} e^{\cos x} \sin(2x) dx$$
. [13]

Question 3.

Approximate the following integral using the *Trapezoid Rule* with n = 4.

$$\int_0^{2\pi} \sin 2x \ dx \tag{9}$$

Question 4.

Determine the volume of the solid obtained by rotating the portion of the region bounded by $y = \sqrt[3]{x}$ and $y = \frac{x}{4}$ that lies in the first quadrant, about the y-axis, using the disk method.

Question 5.

Use the Simpson's rule with n = 4 to approximate the arclength of the graph of $y = x^2 + x + 3$ from A(-2,5) to B(2,9).

Question 6.

Find the nth partial sum of the following series, and hence determine the sum of the series, if it converges.

$$\sum_{i=1}^{\infty} \left(\frac{1}{3^i} - \frac{1}{3^{i+1}} \right)$$

[9]

Question 7.

Find the radius and interval of convergence of the following power series.

$$\sum_{n=1}^{\infty} \frac{x^n}{4^n \sqrt{n}}$$

[12]

END OF EXAMINATION QUESTION PAPER